STRUCTURAL STUDIES IN MAIN GROUP CHEMISTRY

III*. TIN-119m MÖSSBAUER INVESTIGATION OF SOME TIN–NITROGEN BONDED COMPOUNDS

P. G. HARRISON**

Department of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD (Great Britain)

J. J. ZUCKERMAN

Department of Chemistry, State University of New York at Albany, 1,400, Washington Avenue, Albany, New York (U.S.A.)

(Received November 3rd, 1972)

SUMMARY

The tin-119*m* Mössbauer data are presented for several classes of organotinnitrogen bonded compounds, including *N*-stannylamines, -imines, -amides, and -carbamates. The structures of the *N*,*O*-bis(trialkylstannyl)carbamates are discussed. Those derivatives possessing the Sn-NR-C(O)X group are intermolecularly associated via carbonyl—tin coordination, the strength of the coordination varying with X in the manner $H \approx OSnR_3 > OR$.

In recent years tin-119*m* Mössbauer Spectroscopy has been shown to be a powerful technique for the structural elucidation of organotin compounds². Investigations of tin-nitrogen bonded compounds have so far been confined to studies of organotin(IV) derivatives of amines³, azole ring systems⁴, and pseudohalides⁵. In the lower oxidation state, the tin(II) derivatives of imidazole, triazole⁶ and *N*-phenyl-methylcarbamate⁷ have been studied. Because of the interesting structural possibilities, we have used Mössbauer spectroscopy to study triorganotin carbamates, and in addition some amino- and amido-tin derivatives.

RESULTS AND DISCUSSION

Tin-119*m* Mössbauer data for the tin-nitrogen bonded compounds are collected in Tables 1 and 2. Our data are in excellent agreement with those compounds for which data are already available [compounds (I)³, (XI)⁵ and (XV)³], although for compound (I) we have been able, using the narrow-line Ba^{119m}SnO₃ source, to discern a small quadrupole splitting not previously observed.

The isomer shifts for the triorganotin derivatives all fall in the narrow range

** Author to whom correspondence should be addressed.

^{*} For Part II see ref. 1.

TABLE 1

TIN-119m MÖSSBAUER DATA FOR SOME ORGANOTIN(IV)-NITROGEN COMPOUNDS

No.	Compound	δ (mm/s)	∆ (mm/s)	Γ ₁ (mm/s)	Γ ₂ (mm/s)
(I)	Me ₃ SnNEt ₂ ^a	1.25	0.92	1.19	1.29
(II) - ·	Me ₃ SnNPhSiMe ₃	1.33	1.45	1.27	1.13
(III)	Me ₃ SnNPhCO ₂ SnMe ₃	1.29	3.72	1.86	1.71
(IV)	Me ₃ SnN=CPh ₂	1.39	1.22	1.00	0.94
(V)	Bu ₃ SnNMe ₂	1.43	1.08	1.62	1.50
(VI)	Bu ₃ SnNEt ₂	1.36	0.93	1.73	1.03
(VII)	Bu ₃ SnNPhCHO	1.39	3.21	1.50	1.31
(VIII)	Bu ₃ SnNNpCHO	1.30	3.39	1.87	1.87
(IX)	Bu ₃ SnNEtCO ₂ Et	1.42	2.24	1.64	1.27
(X)	Bu ₃ SnNPhCO ₂ Et	1.53	2.68	1.80	1.22
(XI)	Ph ₃ SnN ₃ ^b	1.42	3.28	1.28	1.46
(XII)	Ph ₃ SnN=PPhMe ₂	1.35		1.60	
(XIII)	Ph ₃ SnN=PPh ₃	1.38		1.84	
(XIV)	$Me_2Sn(NMe_2)_2$	1.20	1.35	1.84	1.32
(XV)	$Sn(NMe_2)_4$	0.77		1.66	

" Ref. 3 gives δ 1.13 mm/s, Δ 0. b Ref. 4 gives δ 1.40 mm/s, Δ 3.19 mm/s. c Ref. 3 gives δ 0.84 mm/s, Δ 0.

TABLE 2

TIN-119m MÖSSBAUER SPECTRA OF N,O-BIS(TRIALKYLTIN)CARBAMATES

No.	Compound	δ_1 (mm/s)	δ2 (mm/s)	δ ₃ (mm/s)	δ₄ (mm/s)
(XVI) (XVII) (XVIII) (XIX) (XX)	Pr ₃ SnNNpCO ₂ SnPr ₃ Bu ₃ SnNMeCO ₂ SnBu ₃ Bu ₃ SnNEtCO ₂ SnBu ₃ Bu ₃ SnNPhCO ₂ SnBu ₃ Bu ₃ SnNPhCO ₂ SnBu ₃	-0.37 -0.33 -0.28 -0.33 -0.33	0.31 0.46 0.44 0.31	2.30 2.27 2.14 2.41 2.16	3.25 3.25 3.37 3.22

1.25–1.53 mm/s. However, the quadrupole splittings range from zero to 3.72 mm/s. Quadrupolar interactions arise when the electric field at the tin nucleus deviates from cubic symmetry. The two principal origins of such perturbations are (i) electronic imbalances in the σ -framework of approximately tetrahedral or octahedral geometries, which produce small (< 1.4 mm/s), often unresolvable splittings and (ii) changes in coordination number at tin causing gross deviations from cubic symmetry, which produce large (2.2–3.9 mm/s) splittings⁸, although secondary effects, *e.g.* π -bonding may not have negligible contributions. Colligative measurements have indicated monomeric character for the stannylamines⁹ and -phosphinimines¹⁰, which have quadrupole splittings of ca. 1 mm/s and zero respectively. The fairly large half-height peak widths of the two phosphinimines may indicate unresolved splittings. The N-stannylketimine, (IV), and the silylstannylamine, (II), exhibit similar small splittings. Thus it is evident that the quadrupole splittings in these four-coordinate derivatives arise from the small changes induced in the σ -framework by the differing ligand

electronegativities. In contrast, triphenyltin azide, for which a structure involving azide groups bridging planar Ph_3Sn moieties increasing the coordination number at tin to five has been proposed, exhibits a quadrupole splitting of 3.28 mm/s.

A priori the reactive Sn-X bonds of R_3SnX (X = H, OR, OSn R_3) compounds may react with the multiply-bonded isocyanate N=C=O system in two possible ways to give Sn-N (A) or Sn-O (B) bonded structures¹¹.*.

$$\begin{array}{ccc} R_{3}SnX + R' - N = C = O \longrightarrow R_{3}Sn - NR - C(O)X & \text{or} & R_{3}Sn - O - C(=NR)X \\ (A) & (B) & (1) \end{array}$$

Since on hydrolysis the adducts yield the N-proto derivatives, the tin-nitrogen bonded structure (A) was preferred. The formulation of the triorganotin hydride/isocyanate adducts as N-stannylformamide derivatives is corroborated by NMR, UV and IR spectroscopy¹², and in the latter, the lowering of the carbonyl stretching frequency from the parent formamide to that of the adducts by ca. 60 cm⁻¹ is indicative of strong carbonyl—tin coordination, rather than a mass effect due to the heavy organotin residue. This has been demonstrated by infrared¹³ and X-ray crystallographic studies¹⁴ on (triphenylstannyl)-N-phenyl-N-benzoylhydroxylamine in which the carbonyl group is *intra*molecularly coordinated to tin, causing the infrared vibration to be lowered by ca. 80 cm⁻¹. Triorganotin derivatives of organic residues, R₃SnX-Y, which possess in the residue X-Y a second group Y capable of coordination to the metallic centre may adopt either the *cis*- (C) or *trans*-R₃SnXY (D) configuration.

TABLE 3

ASSIGNMENTS OF THE MÖSSBAUER SPECTRA OF THE N,O-BIS(TRIALKYLTIN)CAR-BAMATES

Compound	δ(1,4) (mm/s)	δ(2,3) (mm/s)	$\Delta(1,4)$ (mm/s)	$\Delta(2,3)$ (mm/s)
(XVI)	1.49	1.31	3.72	1.99
(χνιί)	1.48	1.36	3.61	1.81
(XVIII)	1.50	1.39	3.54	1.70
(XIX)	1.44	1.36	3.55	2.10
(XX)	1.48	1.25	3.55	1.81

A. Peaks (1) & (4) and (2) & (3)

B. Peaks (1) & (3) and (2) & (4)

Compound	δ(1,3) (mm/s)	δ(2,4) (mm/s)	$\Delta(1,3)$ (mm/s)	Δ(2,4) (mm/s)
(XVI)	0.97	1.83	2.67	3.04
(XVII)	0.97	1.83	2.60	2.83
(XVIII)	0.93	1.85	2.41	2.83
χīχ) ΄	1.06	1.76	2.74	2.91
xx)	0.93	1.80	2.45	2.91

* In the case of the adduct of triethyltin hydride and hexyl isocyanate, addition to the N=C bond takes place in the reverse sense to give the $Et_3Sn-C(O)-NH(C_6H_{13})^{12}$.

Model compounds of each type for which both structural and Mössbauer data are available, show that derivatives with the *cis* configuration have quadrupole splittings of ca. 2 mm/s¹³, whilst the *trans* configuration gives rise to splittings well in excess of 3 mm/s^{4,15}. The two *N*-(tributylstannyl)formamide derivatives, (VII) and (VIII), exhibit quadrupole splittings of 3.2–3.4 mm/s, consistent with *inter*molecular coordination, as in (E). Davies and Bloodworth¹¹ have postulated a rapid interconvertibility of the amido (A) and imido (B) forms of the adducts of the trialkyltin alkoxides and bis(trialkyltin) oxides with isocyanates via *inter*molecular coordination, *viz*.:

Ethyl-N-ethyl- and N-phenyl-N-(tributylstannyl)carbamate, (IX) and (X), exhibit quadrupole splittings of 2.24 and 2.68 mm/s respectively, supporting a model of rather weak *inter*molecular interaction, which is also indicated by the infrared carbonyl stretching frequency which is lowered by only 20-40 cm⁻¹.

The Mössbauer spectra of the adducts of bis(trialkyltin) oxides and isocyanates exhibited four peaks (Table 2), except for N,O-bis(trimethylstannyl)-N-phenylcarbamate (III) for which only a doublet with a quadrupole splitting of 3.72 mm/s was observed. The N,O-bis(trialkyltin)carbamates, $R_3Sn^1-NR'-C(O)-O-Sn^2R_3$, possess two different types of tin, for which two quadrupole split resonances are expected. The four observed lines may therefore be grouped in three possible ways. The assignments, $\delta(1) \& \delta(2)$, and $\delta(3) \& \delta(4)$, may be ruled out since it would place one of the isomer shifts in the region usually associated with tin in its lower oxidation state¹⁶. Isomer shift and quadrupole splitting data resulting from the remaining possibilities is given in Table 3. Assignment B results in isomer shifts of ca 1.0 and 1.8 mm/s which are both well outside the range of isomer shifts of the other compounds discussed above and other R_3SnX derivatives¹⁷. Hence the most probable choice appears to be assignment A, for which the isomer shifts are in the expected range and the two quadrupole splittings are ca. 3.5 and ca. 2 mm/s. This would require one of the tin atoms to possess a trans- R_3SnX_2 configuration, and hence any intramolecularly coordinated structure such as

may be ruled out, since the expected quadrupole splitting for neither tin should exceed ca. 2 mm/s.

Observation of the carbonyl stretching region in the infrared indicates strong carbonyl \rightarrow tin coordination. The Mössbauer data is consistent with the previous model [eqn. (2), X = OSnBu₃], where peaks 1 and 4 may be assigned to Sn¹ and peaks 2 and 3 to Sn². Tributyltin alkoxides such as Bu₃SnO-t-Bu and Bu₃SnOCPh₃ in which steric hindrance prevents any association have quadrupole splitting of ca. 2 mm/s¹⁷, and hence Sn² must remain essentially four-coordinate when R = Pr or Bu. For the methyl derivative (III), however, the coordination number of all tin atoms must be raised to five via extra coordination, reflecting the ease with which the Me₃Sn moiety assumes a planar configuration¹⁸.

An alternative structure, (G), may also be considered for the N,O-bis(trialkyl-tin)carbamates.

In this structure the quadrupole splitting expected for the five-coordinate Sn^1 atoms will be ca. 3.5 mm/s, a value observed for the *O*-trialkyltin carbamates and the closely related trialkyltin acetates¹⁷. The value for the four-coordinate tin–nitrogen bonded Sn^2 atoms is however not expected to exceed ca. 1.5 mm/s. However, this structure may not be unequivocally ruled out.

The strength of the carbonyl-tin coordinate bond of the $R_3Sn-NR'-C(O)X$ adducts is thus dependent on the group X, and, using the magnitude of the Mössbauer quadrupole splitting as a measure of the distortion from tetrahedral to trigonal bipyramidal, varies in the order $H \approx OSnR_3 > OR$.

EXPERIMENTAL

All manipulations were performed in an inert atmosphere. Compounds (I), (V), (VI), (XIV) and (XVI) were prepared from the organotin chloride and the lithium amine⁹. Compounds (IX) and (X) were prepared from tributyltin ethoxide and the appropriate isocyanate¹¹, whilst compounds (III) and (XVI)-(XX) were similarly obtained from the bis(trialkyltin) oxide and the isocyanate¹⁹. The silylstannylamine (II) was synthesised by the addition of trimethyltin chloride to the lithium derivative of N-(trimethylsilyl)aniline (from (trimethylsilyl)aniline²⁰ and butyllithium in ether at

 -80°). N-(Trimethylstannyl)diphenylketimine (IV) was prepared according to Chan and Rochow²¹. The organotin formamides, (VII) and (VIII) were synthesised by the addition of tributyltin hydride to the appropriate aryl isocyanate¹². Triphenyltin azide was prepared from the corresponding chloride and sodium azide²². The triorganotin phosphinimines, (XII) and (XIII), were prepared from triphenyltin azide and the phosphine at ca. 200°¹¹.

Tin-119*m* Mössbauer data were collected at 77 K vs. a $Ba^{119m}SnO_3$ source, and refined using least squares.

REFERENCES

- 1 P. G. Harrison, J. Chem. Soc., Perkin Trans., 1, (1972) 130.
- 2 J. J. Zuckerman, Advan. Organometal. Chem., 9 (1970) 21.
- 3 R. F. Dalton and K. Jones, Inorg. Nucl. Chem. Lett., 5 (1969) 785.
- 4 R. H. Herber, H. A. Stöckler and W. T. Reichle, J. Chem. Phys., 42 (1965) 2447; R. H. Herber, Tech. Report Series No. 50, Int. Atomic Energy Agency, Vienna, 1966, p. 127-132.
- 5 B. Gassenheimer and R. H. Herber, Inorg. Chem., 8 (1969) 1120.
- 6 P. G. Harrison, J. Chem. Soc., Chem. Commun., (1972) 544.
- 7 P. G. Harrison and J. J. Zuckerman, Chem. Commun., (1968) 1118.
- 9 K. Jones and M. F. Lappert, J. Chem. Soc., (1965) 1944.
- 10 W. L. Lehn, Inorg. Chem., 6 (1967) 1061.
- 11 A. J. Bloodworth and A. G. Davies, J. Chem. Soc., (1965) 5238.
- 12 M. J. Janssen and J. G. Noltes, J. Organometal Chem., 1 (1963) 346.
- 13 P. G. Harrison, J. Organometal, Chem., 38 (1972) C5.
- 14 T. J. King and P. G. Harrison, J. Chem. Soc., Chem. Commun., (1972) 815.
- 15 P. G. Harrison and J. Buckle, J. Organometal. Chem., in press.
- 16 J. J. Zuckerman, in I. J. Gruverman (Ed.), Mössbauer Effect Methodology, Vol. III, Plenum Press, New York, 1967, p. 15.
- 17 P. J. Smith, Organometal. Chem. Rev., Sect. A, 5 (1971) 373.
- 18 H. C. Clark, R. J. O'Brien and J. Trotter, J. Chem. Soc., (1964) 2332; R. A. Forder and G. M. Sheldrick, J. Chem. Soc. D, (1969) 1125; E. O. Schemper and D. Britton, Inorg. Chem., 5 (1966) 507.
- 19 A. J. Bloodworth and A. G. Davies, J. Chem. Soc., (1965) 6245.
- 20 E. W. Randall and J. J. Zuckerman, J. Amer. Chem. Soc., 90 (1968) 3167.
- 21 L.-H. Chan and E. G. Rochow, J. Organometal Chem., 9 (1967) 231.
- 22 J. S. Thayer and R. West, Inorg. Chem., 3 (1964) 402.